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Two experiments used response-initiated delay schedules to test the idea that when food reinforce-
ment is available at regular intervals, the time an animal waits before its first operant response
(waiting time) is proportional to the immediately preceding interfood interval (linear waiting; Wynne
& Staddon, 1988). In Experiment 1 the interfood intervals varied from cycle to cycle according to
one of four sinusoidal sequences with different amounts of added noise. Waiting times tracked the
input cycle in a way which showed that they were affected by interfood intervals earlier than the
immediately preceding one. In Experiment 2 different patterns of long and short interfood intervals
were presented, and the results implied that waiting times are disproportionately influenced by the
shortest of recent interfood intervals. A model based on this idea is shown to account for a wide
range of results on the dynamics of timing behavior.

Key words: linear waiting, temporal discrimination, sequential analysis, cyclic-interval schedules,
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When an hedonic event such as a food de-
livery to a hungry subject occurs at regular
intervals, behavior often reflects this period-
icity. This was demonstrated in Pavlov's labo-
ratory at the turn of the century (Feokritova,
1912, cited in Pavlov, 1928), and it has been
much studied since, in both operant and Pav-
lovian settings (see Richelle & Lejeune, 1980,
for a review). Recently, Staddon, Wynne, and
Higa (1991), expanding on a suggestion of
Ferster and Skinner (1957), argued that ad-
aptation to temporal constraints may be re-
sponsible for the typical patterns of respond-
ing observed on many different schedules of
reinforcement, not just those in which time
is explicitly programmed (e.g., interval sched-
ules).

After sufficient experience on periodic
food schedules (such as fixed interval or
fixed time), subjects usually develop a pattern
of responding that takes the form of a post-
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reinforcement pause or waiting time in each
interfood interval (IFI) before operant re-
sponding begins. This waiting time is typically
proportional to the IFI (Schneider, 1969).
Skinner (1938) observed that "With a rela-
tively short period of [temporal condition-
ing] depressions [i.e., postreinforcement
pauses] begin to appear within a few days"
(p. 125). He also noted that when the IFI was
long, the development of pausing was "sub-
stantially retarded." Because of this lag in ad-
aptation, most research on temporal sched-
ules has centered on the steady-state
properties of the behavior. In contrast, the
present study tests an hypothesis about the
dynamics of the process of initial adaptation
to temporal schedules.

Several recent studies (Higa, Thaw, & Stad-
don, 1993; Higa, Wynne, & Staddon, 1991;
Innis, Mitchell, & Staddon, 1993; Wynne &
Staddon, 1988, 1992) have looked at the dy-
namics of the pausing process in pigeons us-
ing response-initiated delay (RID) schedules
(technically, signaled chain or conjunctive
fixed-ratio [FR] 1 fixed-time [FT] schedules).
As shown in Figure 1, each IFI starts with the
single response key illuminated red. A re-
sponse to this key causes it to turn green for
a schedule-controlled time (the food delay,
7) prior to the delivery of food. The next IFI
follows directly.
Wynne and Staddon (1988, 1992) showed

that on these RID schedules, pigeons pause
an approximately fixed fraction of the inter-
food interval I (where I is just the sum of the
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Fig. 1. One IFI of the response-initiated delay (RID) schedule.

waiting time, t, plus the subsequent pro-
grammed delay, T), irrespective of how the
relationship between food delay and waiting
time is programmed. Indeed, despite the col-
or change on first response to a RID sched-
ule, several studies have shown that waiting
times so obtained are indistinguishable from
those found on regular fixed-interval (FI)
schedules in which the first response has no

stimulus consequences (Shull, 1970; Wynne
& Staddon, 1992). Innis et al. (1993) and
Wynne and Staddon (1992) also demonstrat-
ed that waiting times on RID schedules are

controlled by the IFI, and not the food delay,
T (but see Capehart, Eckerman, Guilkey, &
Shull, 1980). Moreover, the pigeons' waiting
times tracked the IFIs even when these varied
from trial to trial (Higa et al., 1991; Innis et
al., 1993). Little sign was found of the gradual
adjustment to each new IFI observed by Fers-
ter and Skinner (1957). This suggested that at
least some part of the dynamic process that
allows adaptation to temporal schedules might
be quite rapid. We termed this rapid adapta-
tion of waiting times to IFIs obligatory linear
waiting (Wynne & Staddon, 1988). The aim of
the present experiments is to better under-
stand this fast-acting process. We attempt to
minimize the effects of slower processes by
changing session parameters frequently.

The simplest theoretical possibility is that
waiting is strictly a one-back process: Waiting
time in IFI N + 1 is some function of the
duration of the preceding IFI, N, that is, tN+l
= f(IN). The simplest form of dependence is
linear, so the one-back linear-waiting hypoth-
esis is just that:

tN+ 1 = MIN + B, (1)
where A is the constant of proportionality (0
< A < 1) and B is a constant intercept of
negligible magnitude (modal values from
previous studies are A = 0.2, B = 0).
Wynne and Staddon (1988) tested a coun-

terintuitive prediction of this hypothesis us-

ing an "autocatalytic" RID schedule in which
the programmed delay, T was set proportion-
al to the preceding IFI: TN+1 = WIN. We argued
that if waiting time, tN+1, is proportional to
the preceding IFI, only two outcomes are pos-
sible, depending on the value of the constant
w. If w > 1/A, waiting times in successive in-
tervals should get longer and longer; if w <
1/A, waiting times should get shorter and
shorter.
The results were in partial agreement with

these predictions. At low values of w, waiting
times were very short; at high values of w,

waiting times were long and tended to in-
crease in runs. But the fact that subjects rare-

Food Food
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T
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ly stopped responding completely when ex-
posed to large w values implies that the
preceding IFI is not the only determinant of
waiting time. Our data are consistent with a
dependence of waiting time on, for example,
the weighted sum of the previous M IFIs (B
is assumed to be negligible):

M

tN+l = > AkIN-k (2)
k=O

where Ak are weights for each IFI from 0 to M.
The aim of the present experiments was to

explore the dependence of waiting time on
preceding IFIs in the RID procedure. Our
strategy was to present the pigeons with food
delays that varied within a session, and to an-
alyze the obtained waiting times to determine
how they were influenced by IFIs further back
in the past. In the first experiment we varied
the duration of T from IFI to IFI in a more
or less regular manner and then used simu-
lations to see if waiting time, tN+1, tracked IFI,
IN, in a manner consistent with one-back lin-
ear waiting, or whether the results implied ef-
fects of IFIs further back in the series. The
second experiment allowed tests of specific
hypotheses about how IFIs combine to influ-
ence waiting times.

EXPERIMENT 1:
CYCLIC IFIS WITH
ADDED NOISE

Several previous studies have shown that
when IFIs vary regularly within a session, the
pauses produced by pigeons track these
changes (Higa et al., 1991; Innis, 1981; Innis
et al., 1993; Innis & Staddon, 1970, 1971).
Our aim here is to use this method to uncov-
er the details of the dynamics of this process.
Is waiting time controlled by IFIs in trials ear-
lier than the immediately preceding one (is
M > 0 in Equation 2)? We approach this
question here by simulating the results to be
expected on the basis of Equations 1 and 2
and comparing them with obtained waiting
times from different input series.

Method
Subjects. Four experimentally experienced,

locally acquired homing pigeons (Columba liv-
ia) of racing stock were used. They were held
at 80% of their free-feeding weights by limit-
ing access to food.

Apparatus. The experiment was run in a one-
key cubic steel Skinner box with internal di-
mensions 33 cm on a side. A single response
key (2.5 cm diameter), which could be transil-
luminated with red or green light, was mount-
ed 21 cm above the floor in the center of the
back panel. The food-hopper opening (2 cm
diameter), set 7 cm above the floor in the cen-
ter of the back wall, gave access to mixed food
grains when the food hopper was raised. A
houselight in the ceiling gave background il-
lumination throughout the experiment. There
was no need for a hopper light because the
hopper opening projected 3 cm into the cham-
ber. Food reward was 2-s access to mixed grains.
A Commodore® VIC-20 microcomputer con-
trolled experimental events and recorded the
times of key pecks. Data were transferred to a
larger computer for analysis.

Procedure. Each experimental session consist-
ed of 100 IFIs of the RID procedure described
above, one IFI of which is shown in Figure 1.
In this experiment delay time, T, in the pres-
ence of the green stimulus varied from IFI to
IFI according to the sinusoidal rule:

TN= 10 + 5sin(2N7r/100) + E, (3)
where N is IFI number and E is a noise term.
Thus, when E = 0, successive values of T in a
session followed a single cycle of a sine wave
with a mean of 10 s and a range of 5 to 15 s.
For the other three conditions, E was derived
by sampling from a rectangular random dis-
tribution ranging from 0 to 0.25, 0 to 0.5, or
0 to 2. In order to maintain a constant range
of T values, each of the three T series ob-
tained in this way was normalized to keep the
overall range between 5 and 15 s. The four T
series thus represent successively more de-
graded versions of the pure sine wave that
comprised Condition 1. The four input series
are the dashed lines in Figure 2. Each subject
received one of these four T series each day
so that each value was presented four times
per subject. The order of the different series
was quasi-randomized, as shown in Table 1.

Results
The key data here are the obtained series

of waiting times (t values) for each T series.
Figure 2 shows the four programmed T se-
ries, the mean series of waiting times, t, and
the series of IFIs, I (the sum of the other two
series) for Bird 15. The T and I series are
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Fig. 2. Each panel shows the input sequence of food delays (T, dashed lines), and interfood intervals (solid lines),
plotted against the left y axis. The corresponding sequence of waiting times (t, dotted lines) is plotted against the
right y axis. Values are averaged over the four sessions of each interfood interval series for Bird 15 in Experiment 1.
The first waiting time and last interfood interval for each day are omitted.

plotted on a different ordinate scale than the
t series. Visual inspection suggests that the
waiting times track the IFIs, at least for the
first three input series. As will be explained
shortly, the data in Table 2 indicate that this
subject tracked less effectively than Birds 195
and 280 and similarly to Bird 20.
The relationship of theoretical interest

here is between the waiting times, t, and the
IFIs, I. Figure 2 suggests a relationship be-
tween these variables. To quantify this im-
pression we performed linear regressions of
the series of I onto the series of t. Table 2
shows the best fits by the method of least
squares to the equation

tN+I = OtIN + (B (4)

for each of the four T series for each pigeon.
This equation is identical to Equation 1 with
the replacement of theoretical parameters A
and B with empirical estimates at and P3.

In performing the regression analysis from
Equation 4 on these data, a possible con-
founding effect arises. Because IN = tN + TN,
a relationship between tN+l and IN could arise
simply if t values tended to occur in runs of
similar values. To control for this possibility,
two further regression analyses were per-
formed. The first was on the equation

tN+I = atTN + P, (5)
which controls for the contribution of tN to
IN. Finally a regression directly on the under-
lying sine wave was performed:
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Table 1

Sequence of E parameters for each pigeon in Experi-
ment 1.

Condition Bird
(day) 15 20 195 280

1 0 2 0.5 0.25
2 0.25 0.5 2 0
3 0.5 0.25 0 2
4 2 0 0.25 0.5
5 0 2 0.5 0.25
6 0.25 0.5 2 0
7 0.5 0.25 0 2
8 2 0 0.25 0.25
9 0 2 0.5 0.5
10 0.25 0.5 2 0
11 0.5 0.25 0 2
12 2 0 0.25 0.5
13 0 2 0.5 0.25
14 0.25 0.5 2 0
15 0.5 0.25 0 2
16 2 0 0.25 0.5

tN+l = asin(2Nrr/100) + . (6)

This tests whether the tracking by t values is
really of the underlying sinusoid.
The results of these regression analyses for

all subjects are shown in Table 2. Consider
first the proportions of variance accounted
for (v2) by the three regression equations.
Most of these values are similar for the three
different regressions. It is not the case that
the regressions of t onto Iare inflated relative
to the regressions of t onto T or the under-
lying sinusoid. Indeed, usually the regressions
onto I produce lower i- values than do the
other two regression equations, indicating
that there can be no inflation of these values
due to the relationship between tN and IN.

Table 2 shows three things about the rela-
tionship between tN+l and IN. First, 1B is never
significantly different from zero (except for
Bird 195 in Condition E = 2; see the 95% con-
fidence intervals). Second, values of a are
around 0.2 (a little lower for Bird 15), a value
compatible with what has been found in pre-
vious studies (Higa et al., 1991; Wynne & Stad-
don, 1988, 1992). Third, the proportion of
variance (72) accounted for by each regression
equation decreases as the value of E increases
(i.e., the noisier series are less well fitted by
this model). The relationship between v? and
E is included in the bottom panel of Figure 3.
The relationship between ? and E for the

regression onto I shown in Table 2 and Figure

3 does not appear to be consistent with a sim-
ple one-back process. Intuitively, a one-back
process should be able to track a noisy IFI se-
ries just as well as a smooth one. Our data, on
the contrary, show that the larger the value of
the noise term, E, the poorer the tracking.
However, intuition is often a poor guide, es-
pecially because we must also take into account
that, in addition to the noise in the WI series,
the linear waiting process will itself be noisy. We
therefore performed a number of simulations
of different types of noisy linear waiting, to see
how the pattern of correlations for the simu-
lated data compared with the correlations from
the pigeon data at different values of the E pa-
rameter. The pattern of results from all models
assuming an influence of IFIs further than one
back (M > 0 in Equation 2) converged on an
analogous relationship between ? and E, and
therefore we present here the results from just
two noisy models: a one-back process and a
three-back process (M = 2 in Equation 2). Our
method was to generate simulated data with
these two processes and compare the pattern
of correlations between simulated tN+I and IN
with those obtained from the pigeon data.

In the first simulation, a t series was created
from a noisy first order linear waiting process
according to Equation 7:

tN+1 = (A + T)IN. (7)
This is simply Equation 1 with B = 0 and the
addition of a Gaussian noise term T. A, the
constant of proportionality, was set equal to
0.20 (the relations of interest do not depend
on the value of A). Note that the noise here
is added to A in Equation 1 (rather than to
I) to ensure that the standard deviation of the
distribution of the waiting times for constant
I is proportional to their mean, as the Weber
law property of temporal discrimination re-
quires (cf. Gibbon, 1977; Staddon, 1965).
Our second simulation was based on Equa-

tion 2, with M = 2 and AO = Al = A2 = 0.2/
3, and Gaussian noise added as in Equation
7. Equation 8 is an example of a three-back
linear waiting process:

tN+l = [(A + T)/3] (IN + IAL + IAL2). (8)
Figure 3 shows the 72 values for the regres-

sions of tN+I onto IN for each value of E. For
the one-back simulation (Equation 7), we see
that, with no noise in the simulation, ?2 is 1.0
for all values of E. This illustrates the fact that
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Table 2

Linear regression of wait series, tN+1, onto IFI series, IN, delay series, TN, and onto the under-
lying sinusoid, sin(2NAT/100), for each bird in Experiment 1 (averaged over each E value).
Mean parameter values are shown with associated 95% confidence intervals in brackets. df =
97 in all cases.

Bird E 12 Model

15 0
0.25
0.5
2
0
0.25
0.5
2
0
0.25
0.5
2

20 0
0.25
0.5
2
0
0.25
0.5
2
0
0.25
0.5
2

195 0
0.25
0.5
2
0
0.25
0.5
2
0
0.25
0.5
2

280 0
0.25
0.5
2
0
0.25
0.5
2
0
0.25
0.5
2

.36

.47

.23

.10

.40

.53

.34

.08

.40

.50

.45

.11

.39

.23

.26

.06

.61

.40

.37

.14

.61

.39

.45

.12

.48

.43

.33

.14

.57

.44

.43

.15

.57

.45

.48

.29

.56

.52

.49

.21

.54

.52

.45

.21

.54

.57

.48

.24

tN+l = 0.11 [0.08-0.14]IN + 0.32[-0.03-0.68]
tN+I = 0.11 [0.09 O0.13]IN + 0.23[-0.05 0.52]
tN+l = 0.12[0.07 00.16]IN + 0.48[-0.07 - 1.04]
tN+l = 0.11 [0.05 - 0.18]IN + 0.62[-0.24 - 1.48]
tN+l = 0.14[0.10-0.17] TN + 0.24[-0.11 -*0.59]
tN+I = 0.14[0.11 - 0.16] TN + 0.14[-0.13 - 0.41]
tN+I = 0.20[0.15 - 0.26] TN - 0.17[-0.78 - 0.43]
tN+I = 0.14[0.05 - 0.23] TN + 0.63[-0.32 - 1.58]
tN+l = 0.68[0.51 -÷ 0.84]sin(2Nrr/100) + 1.60[1.49 - 1.72]
tN+l = 0.58[0.46 - 0.70]sin(2NA/100) + 1.50[1.41 - 1.58]
tN+I = 0.90[0.70 -+ I.10]sin(2Nrr/100) + 1.92[1.78 - 2.06]
tN+l = 0.58[0.24 - 0.92]sin(2Nrr/100) + 2.02[1.78 - 2.26]
tN+l = 0.20[0.15 - 0.25]IN + 0.36[-0.37 - 1.10]
tN+I = 0.22 [0.14 - 0.30] IN + 0.19[-0.92 - 1.30]
tN+I = 0.20[0.13 - 0.27]IN + 0.41 [-0.55 - 1.36]
tN+I = 0.12[0.03-. 0.21]IN + 1.21 [-0.01 -*2.44]
tN+l = 0.43[0.36-0.50] TN - 1.31[-0.58 -2.05]
tN+I = 0.47[0.35 - 0.58] TN - 1.57[-0.38 - 2.75]
tN+l = 0.37[0.28 - 0.47] TN - 0.70[-1.73 - 0.32]
tN+I = 0.28]0.14 -0.-41] TN - 0.02[-1.45 - 1.41]
tN+I = 2.16[1.82 - 2.51]sin(2Nnr/100) + 3.02[2.77 -* 3.26]
tN+l = 2.01 [1.51 - 2.51]sin(2Nrr/100) + 3.03[2.67 - 3.38]
tN+1 = 1.58[1.23 - 1.92]sin(2Nrr/100) + 3.11 [2.87 - 3.36]
tN+I = 0.97[0.46 - 1.49]sin(2NTr/100) + 2.73[2.36 - 3.09]
tN+l = 0.18[0.14 -0.22]It + 0.01 [-0.48 0.51]
tN+l = 0.21 [0.16 00.25]IN - 0.23[-0.83 - 0.36]
tN+I = 0.17[0.12 - 0.22]IN + 0.00[-0.64 - 0.65]
tN+l = 0.09[0.05 - 0.13]IN + 0.94[0.39 -- 1.50]
tN+I = 0.26[0.21 -0.30] TN - 0.31 [-0.79-* 0.16]
tN+I = 0.27[0.21 -*0.33] TN - 0.43[-1.06 - 0.21]
tN+l = 0.27[0.21 - 0.33] TN - 0.56[-1.20 0.08]
tN+l = 0.12[0.06 - 0.17] TN + 0.87[0.30 -* 1.45]
tN+l = 1.29[1.07 -* 1.51]sin(2Nrr/100) + 2.27[2.11 - 2.43]
tN+l = 1.20[0.93 - 1.46]sin(2Nr/100) + 2.25[2.07 - 2.44]
tN+I = 1.07[0.84 - 1.29]sin(2NhT/100) + 2.17[2.01 - 2.33]
tN+I = 0.60[0.42 - 0.79]sin(2Nrr/100) + 2.03[1.89 - 2.16]
tN+1 = 0.23[0.19 -* 0.27]IN - 0.56[-1.10 - -0.02]
tN+l = 0.23[0.19 - 0.27]IN - 0.55[-1.12 -*0.01]
tN+I = 0.21 [0.17 - 0.25]IN - 0.37[-0.93 - 0.19]
tN+l = 0.19[0.12 - 0.26]IN + 0.27[-0.70 - 1.23]
tN+l = 0.30[0.25 - 0.36] TN - 0.76[-1.35 - -0.16]
tN+l = 0.31 [0.25 -*0.37] TN - 0.87[-1.49 - -0.24]
tN+l = 0.26[0.20 - 0.32] TN - 0.42[- 1.03 - 0.19]
tN+l = 0.24[0.14-0.33] TN + 0.29[-0.68 1.27]
tN+l = 1.51 [1.23 -* 1.79]sin(2Nn/100) + 2.27[2.07 -* 2.47]
tN+l = 1.43[1.18 1.67]sin(2Nr/100) + 2.21[2.04 2.39]
tN+l = 1.03[0.81 - 1.24]sin(2Nn/100) + 2.25[2.10 - 2.41]
tN+l = 0.96[0.62 - 1.30]sin(2Nrr/100) + 2.67[2.42 - 2.91]

a one-back process tracks all input series
equally well. As we add more noise, the mo-
del's ability to track is degraded: The i2s are
lower and decrease with increasing E, but only

up to about E = 0.5; beyond this level there
is little further decrease in the 72. The fits of
the model decrease with increases in E up to
a certain level because there are autocorre-



DYNAMICS OF WAITING

I1-back model |
no noise

' . --- ~~~~~0.04
._ .._ .._.._.._.. _.. _... _... _... _.......

- 0.06
NI. --0.08

* - - 0.10

*~-----------_*___*----*_*_---___*__---\ . _ _ . _ _ . _ . _ .. _ .. _ _ .. _ 0.. _1 2.

I 3-back model|
- no noise
--- 0.03
--- 0.06
---0.09
-- 0.12

| pigeondatad

ca- Bird 15
-+- Bird 20
-o-Bird 195
-o- Bird 280

Cl. .

..", --C3. ft
.. .ft. ,. ..

% 0- -

'.
- I ,

+-, "r-l

o.OJ I I I
0 0.25 0.5 2.0

Epsilon
Fig. 3. Each panel shows the goodness of fit of the regression of waiting time in cycle N + 1 (tN+I) onto IFI in

cycle N (IN). Top panel: results of a one-back linear waiting simulation (Equation 5); middle panel: results of a three-

back simulation (Equation 6); bottom panel: results from subjects in Experiment 1. For both simulations the numbers

in the legend are the standard deviations of the noise parameter T. See text for further details.

1.0 -

0.8 -

U)(U)
:0
cl)

0.6 -

0.4-

0.2-

0.0 -

1.0-

0.8 -

*0 0.6-
co

Q 0.4-

0.2-

0.0 -

...

1.0 -

0.8 -

LO 0.6-

e 0.4-

0.2 -

609



C. D. L. WYNNE et al.

lations in the sinusoid that underlies the T
series. These autocorrelations in the input se-
ries values inflate the input-output correla-
tions at the lowest E values.
The results of the simulations of Equation

8 are plotted in the middle panel of Figure
3. Here, the ability of the simulated t series
to track the I series is influenced by the
amount of noise in the input series even
when there is no noise in the simulation; the
goodness of fit of the no-noise simulation de-
clines as E increases. With or without noise in
the simulation, the r2s decrease throughout
the range of E studied here. As expected, a
more than one-back process is progressively
impaired in its ability to track increasingly
noisy input series.
The bottom panel of Figure 3 shows the

comparable y values for the data from the 4
subjects in this experiment (taken from Table
2). These Y2 values decline throughout the
range of E values tested, in a way that approx-
imates simulations from the M = 2 model in
the center panel.

Discussion
Experiment 1 shows that pigeons can track

periodically varying series of food delays,
even when the series are degraded by varying
amounts of noise, but the greater the noise,
the worse the tracking. This degradation of
the effectiveness of tracking does not level
off, as predicted by one-back linear waiting,
but rather continues as more and more noise
is added to the input series. This pattern is
consistent with the hypothesis that current
waiting time is influenced by IFIs further than
one back.
These results cannot be taken as strong

support for the particular more-than-one-
back model simulated here (Equation 8).
Many models with M > 0 in Equation 2 show
some decrement in tracking with increasing
input noise. In Experiment 2 we attempt to
distinguish between different more-than-one-
back linear waiting models.

EXPERIMENT 2: LONG
AND SHORT DELAYS

Experiment 1 has shown that one-back lin-
ear waiting is inadequate as a model of how
waiting times track IFIs. It is not possible,
however, to use the results of that experiment

to distinguish between different ways in
which earlier IFIs might influence waiting
times. The purpose of Experiment 2 was to
test four different models of how earlier IFIs
could contribute to waiting time.

Model 1: Moving-Average Linear Waiting
A simple possibility is that waiting times are

controlled by the average of the last few IFIs.
Equation 8 is an instantiation of moving-aver-
age linear waiting, which, in general, states
that Aks in Equation 2 are equal for all k; that
is,

M

tN+, = [A/(M + 1) ] E nk
k=O

(9)

with parameters defined as before. Thus the
wait on cycle Nis defined as a proportion (A)
of the average of the IFIs over the last M cy-
cles.

Model 2: Moving-Minimum Linear Waiting
A related alternative is that waiting time is

controlled by a moving minimum of the last
few IFIs. There is much independent evi-
dence from a variety of schedules that pi-
geons' waiting times are disproportionately
influenced by the shortest of a group of IFIs.
Higa et al. (1991), Staddon et al. (1991), and
Wynne and Staddon (1992) have argued for
an asymmetry in the influence of long and
short IFIs on RID schedules. A moving-mini-
mum version of linear waiting can be ex-
pressed as

M

(10)tN+l = A min IN-k -

k=O

Thus the wait on cycle N is defined as a pro-
portion (A) of the shortest IFI over the last M
cycles.

Model 3: Exponentially Weighted Moving-
Average Linear Waiting

Killeen (1994) has argued that simple mov-
ing-average models are implausible because
they weight all events in memory up to the
size of the memory window equally, but
events prior to that point have zero weight. A
moving average model "may serve as a rough
approximation to short-term memory, but its
calculation is computationally intensive and
shows a biologically implausible discontinuity
at some point in the past" (Killeen, 1994, p.
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107). This criticism would also apply to sim-
ple moving-minimum models such as Equa-
tion 10. Instead, Killeen has proposed a mod-
el of memory in which event weights decay
exponentially. That is,

Ak = Ae Ak, (11)

where X is a rate parameter determining how
quickly earlier events are forgotten. The up-
date rule for a new estimate of waiting time
based on this exponentially weighted moving
average (EWMA: Killeen, 1981, 1994), where
weights decay as in Equation 11, is simply

tN+l = -yAIN + ( 1 -Y) tN, ((12)
where all parameters are as defined above
and y is a parameter derived from A that con-
trols how memory decays: -y = -ln(I - X).

Model 4: Exponentially Weighted Moving-
Minimum Linear Waiting

It is also simple to modify this model to
give greater weight to shorter IFIs. A simple
inversion of the I parameter (and reinversion
of the output) is sufficient to make an EWMA
model that is disproportionately influenced
by shorter IFIs (cf. Killeen, 1984):

1/tN+l = -yA/IN + (1 - y) tN. (13)
We term this model the exponentially weight-
ed moving minimum (EWMM).
Experiment 2 tests these four forms of lin-

ear waiting against each other by presenting
different series made up of IFIs that are ei-
ther long or short. Each series consists of re-
peating groups of four IFIs each. Each group
of four contains from zero to four short IFIs.
The remaining IFIs in each group are long.
Obtained waiting times can be compared to
those predicted in two different ways: (a) as
overall session averages (i.e., an average col-
lapsed over all IFIs in the session) and (b)
averaged separately for each position in the
set of four IFIs.
We consider first the predicted overall ses-

sion average waiting times. If all the IFIs in
each set of four are long, then, according to
all the models under consideration, the in-
dividual waiting times will all be long and
therefore the session average waiting time
must also be long. Similarly, if all the IFIs in
a session are short, then the waiting times
must also be short under any model.
Outcomes become more interesting as we

mix together short and long IFIs. If most of
the IFIs are long but we mix a few short ones
into the series, a moving-average model pre-
dicts that the session average waiting time will
decrease in proportion to the ratio of short
to long IFIs. This result (for the average wait-
ing time over a session) is independent of the
size of the window over which IFIs are aver-
aged, as long as the window is much shorter
than a session. This prediction is shown in the
top left panel of Figure 4. (In all these sim-
ulations, the relations of interest are not de-
pendent on the value of A, which is therefore
fixed at 0.2.)
The top right panel of Figure 4 shows how

session average waiting times decrease for
moving-minimum linear waiting models with
increasing window sizes. The moving-mini-
mum models produce average waiting times
that drop off rapidly as the proportion of
short IFIs increases. A moving-minimum
model with a window of four cycles, for ex-
ample, drops off to the shortest possible av-
erage waiting time as soon as every fourth IFI
is short.
As shown in the bottom left panel of Figure

4, the predictions from the EWMA model
(for session average waiting times) are very
similar to those of the moving-average model.
This model also shows a linear decline in
waiting times as the proportion of short IFIs
is increased. This prediction is little affected
by the choice of parameter value (-y).
The predictions for session average waiting

times from the EWMM model are shown in
the bottom right panel of Figure 4. These
predicted values are similar to those of the
simple moving-minimum model, but they
show a less sudden drop in waiting time as
the proportion of short IFIs is increased.

Figure 5 shows predicted waiting times av-
eraged separately for each position in the set
of four IFIs. Only predictions from the mov-
ing-minimum and EWMM models are includ-
ed-the other two models were found to be
nonviable after an analysis of session average
waiting times (Figure 6). Where space per-
mits, a dashed line (not to scale) indicates the
changing pattern of long and short IFIs.
The first column of Figure 5 shows the pre-

dictions from moving-minimum linear wait-
ing. Here only three window sizes are consid-
ered (M = 2, 3, and 4). In the degenerate
case of a window size of one, the waiting
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Fig. 4. Session average waiting times predicted by four models in Experiment 2. Top left panel: predictions from
moving-average linear waiting. Top right panel: predictions from moving-minimum linear waiting. Parameter values
shown are for M in Equation 10. Bottom left panel: predictions from the EWMA model. Parameter values are for y

in Equation 12. Bottom right panel: predictions from the EWMM model. Parameter values are for -y in Equation 13.
See text for further details of models.

times would track IFIs perfectly. Window sizes
greater than four behave the same as for a

window size of four (squares in Figure 5)-
no change in waiting time through the
groups of four IFIs.

For moving-minimum linear waiting, wait-
ing times track the series of IFIs; but rather
than tracking smoothly, the model is more in-
fluenced by short IFIs than by long ones, and
therefore drops off rapidly to shorter waiting
times. Consider for example the condition in
which M = 3. If any of the last three IFIs is
short, then a short waiting time is emitted.
Only if all three of the last IFIs are long is a

long waiting time predicted. Thus only in the

one-short condition is any tracking observed
at this parameter value.
For the EWMM model, values of -y deter-

mine the responsiveness of the model, but in
general there is a progressive increase in wait-
ing times for each successive long IFI and a

progressive decrease for each short IFI. Sim-
ilarly to the moving-minimum model, the be-
havior of this model is asymmetrical; each
successive long IFI causes a gradual increase
in waiting time, whereas a single short IFI
causes a precipitous drop in waiting time.
Experiment 2 exposed pigeons to series of

IFIs containing from zero to four short IFIs
in every group of four IFIs, in order to test
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Fig. 6. Session average waiting times obtained from 4
subjects in Experiment 2.

which of the four forms of linear waiting out-
lined above is most appropriate.

Method
Subjects and apparatus. Four homing pi-

geons (Columba livia) at 80% of their free-
feeding weights, with experience on nontem-
poral studies, served as subjects. The same
apparatus was used as in Experiment 1.

Procedure. Each IFI of this experiment was
programmed as for Experiment 1 (see Figure
1). The first response on the red pecking key
caused it to turn green for a time determined
by the experimental program, before food re-
ward was presented without the need for ad-
ditional responding. The times in the pres-
ence of green were either long (L; 10 s) or
short (S; 2 s). Each group of four consecutive
IFIs consisted of a mixture of these two val-
ues. In each group of four, all the IFIs could
be long; the first three could be long and the
other short; the first two could be long and
the last two short; the first one could be long
and the other three short; or all the IFIs
could be short. Thus the five cycle types were
LLLL, LLLS, LLSS, LSSS, or SSSS. The num-
ber of short IFIs in each group of four IFIs
was constant within a session and varied be-
tween daily sessions pseudorandomly for ap-
proximately seven sessions per condition, as
shown in Table 3.

Results
Figure 6 includes the median wait times

from each subject averaged over the last five
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3 -I 1 Short|

~~~~2

)7\ 2-~~~~~~

IV-

3-

2-

1 -

3-

2-

1 -

3-

2-

1 -

--- v



C. D. L. WYNNE et al.

Table 3

Sequence of short food delays for each bird in Experi-
ment 2.

Condition
(day)

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

17

0

3
4
0

1
3
1
4
2
4
0

4
1
2
2
1
3
2
3
2
2
0

2
3
0

4
0

3
4
0

1
3
3
2

Bird

102 105

4 1
3 3
1 4
0 0

1 3
3 1
0 4
4 0
2 2
0 4
3 2
4 3
2 0
3 2
0 1
1 2
2 3
4 4
2 1
0 2
1 3
2 0
1 0
0 1
2 0
0 1
1 2
4 4
4 0
2 3
3 3

1
4
2

sessions of each condition plotted analogous-
ly to the predicted values in Figure 4. By com-
parison with the other panels in Figure 4, it
can be seen that neither the moving-average
nor the EWMA models provide accurate ac-

counts of the obtained results. However, the
moving-minimum and EWMM models do
capture features of the pigeon data.

Pigeon waiting times were longest when
there were zero short IFIs in each group of
four IFIs. Once there were two or more short
IFIs in each group, the obtained waiting
times settled on a short value. Only when
there was one short IFI in each group of four
were there differences among the subjects.
Bird 17 showed a waiting time similar to its
waiting time with zero short IFIs (i.e., a long
waiting time); this is consistent with moving-

minimum linear waiting with a window of
Size 3 or possibly the EWMM model with -y
around 0.9. Bird 102 showed an intermediate
waiting time in the one-short condition,
which is also consistent with moving-mini-
mum linear waiting with a window of Size 3
or the EWMM model with y around 0.5. Birds
105 and 175 showed short waiting times in
the one-short condition, implying a moving-
minimum window of Size 4, or the EWMM
model with -y ' 0.3. There are too few de-
grees of freedom for a statistical analysis of
these patterns.

In Figure 7 median waiting times are av-
eraged separately for each position in the
group of four IFIs, analogous to Figure 5. For
the zero-short and four-short conditions, all
the IFIs in each group of four were long and
short, respectively, and consequently the wait-
ing times were all long or short. In the one-
short condition, there was a gradual increase
in waiting times through the three long IFIs,
followed by a shorter waiting time after the
short IFI. This pattern is consistent with both
models shown in Figure 5, although the form
is more like that of the EWMM model. As the
number of short IFIs progressively increased,
the subjects showed reduced responsiveness
to conditions in the form of degraded track-
ing. In the two-short condition, the changes
in waiting time were not very consistent. For
three-short condition, the waiting times were
mainly flat, except for Bird 17, whose waiting
times were longer after the first two IFIs than
after the subsequent ones. The changes in
waiting time were not abrupt, as predicted by
the moving-minimum model, but rather were
smoother, more like the predictions from the
EWMM model. The clearer tracking in con-
ditions with few short IFIs than in conditions
with more short IFIs (compare the one-short
and three-short conditions) is also consistent
with the EWMM model.

Discussion
The fact that the session average waiting

times do not usually fall off gradually with an
increasing proportion of short IFIs (Figure 6)
is inconsistent with moving-average or EWMA
linear waiting and supports the idea that
shorter IFIs have a disproportionate influ-
ence on waiting time, either in the form of
moving-minimum or EWMM linear waiting.
The analysis of average waiting times at dif-
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ferent positions in the four IFI groups (Fig-
ure 7) supported the EWMM but not the
moving-minimum model. Both analyses
suggest that for most subjects, values of -y less
than 0.5 are most appropriate; this value in-
dicates that the immediately preceding IFI
contributes less than 50% to the next waiting
time (the remaining control comes from ear-
lier IFIs in an exponentially decaying series).
The exception was Bird 17, which appears to
have had a significandy larger value for y, im-
plying that the immediately preceding IFI was
the main controlling factor for the present
waiting time.

GENERAL DISCUSSION
These experiments show that pigeons are

able to react rapidly to changes in temporal
patterning of food delivery (at least at the
short IFIs used here). It appears for our pi-
geons that waiting times were predominantly
controlled not by the immediately preceding
IFI, but by an average of the last few IFIs,
where the calculation of that average is dis-
proportionately influenced by shorter IFI val-
ues, and by more recent IFIs. A model imple-
menting these features (the EWMM model,
Equation 12) best accounted for the results
of Experiment 2.
Experiment 1 demonstrated that pigeons

can track different series of rapidly changing
IFIs that vary randomly from day to day. How-
ever, their ability to track was degraded by
noise added to the series of IFIs: The greater
the noise, the poorer the tracking. This deg-
radation implies that waiting time is affected
by IFIs earlier than the immediately preced-
ing one.
Experiment 2 tested four different forms of

linear waiting that, in different ways, allowed
IFIs earlier than one back to influence wait-
ing time. The manner in which waiting times
changed as different patterns of long and
short IFIs were presented was inconsistent
with models that assumed that an arithmetic
mean moving average of the last few IFIs was

Fig. 7. Obtained median waiting times for each bird
in Experiment 2 averaged separately for each position in
the group of four IFIs. Dashed lines indicate the magni-
tude of the preceding IFI (not to scale).
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controlling waiting time. Models that give a
disproportionate weight to shorter IFIs were,
however, consistent with these results. The
best descriptor of the obtained results was the
EWMM model, which is based on an expo-
nentially weighted moving average of the in-
verted IFI values. By inverting the IFI value
(and then reinverting the output of the mod-
el), smaller IFI values come to have a dispro-
portionate influence.
A version of linear waiting, such as EWMM,

that gives a disproportionate weight to short-
er IFIs can account for a wide range of ap-
parently inconsistent phenomena in the lit-
erature on the dynamics of adaptation to
time. In the introduction we described our
autocatalytic schedule (Wynne & Staddon,
1988, Experiment 3). When the multiplier
controlling the relationship between waiting
time and IFI (w) was small, the waiting times
on this schedule reliably and rapidly became
very short. When the w values were large, the
waiting times tended to increase, as expected
from the one-back version of linear waiting,
but in general the subjects' responding did
not cease. The results from Experiment 2
clarified the reasons for this asymmetry.
When the w value was large, the EWMM pro-
cess protected the subject against "inflation-
ary" increases in waiting time, because any
occasional short IFIs in the recent past put
pressure on waiting times to remain short.
Only when all recent IFIs were long was wait-
ing time forced to increase. Thus, EWMM lin-
ear waiting permits rapid adaptation to tem-
poral regularities in the environment but also
protects subjects against the excessively long
(in the sense that available reinforcers are
missed) waiting times that would be pro-
duced under certain conditions by one-back
or moving-average versions of linear waiting.

Staddon and associates (Innis & Staddon,
1970; Kello & Staddon, 1974; Staddon, 1967,
1969) tested pigeons on a variety of proce-
dures in which fixed-interval (FI) schedules
of two durations were programmed in re-
peating cycles. The general form of these
schedules was 12 Fl 1 min followed by a FI x-
min schedules, where ax = 12. Thus each
study consisted of cycles of 12 FI 1 min fol-
lowed by a 12-min phase of a longer FI value.
In one study the second half of each cycle
consisted of six Fl 2-min schedules (12 Fl 1,
6 Fl 2); in another the second half consisted

of four Fl 3-min schedules (12 Fl 1, 4 Fl 3);
and in a third the second half consisted of
two Fl 6-min schedules (12 FI 1, 2 Fl 6). In
all cases, waiting time during the long IFI
part of the schedules differed little from wait-
ing time during the short IFI part, even after
extended training. Waiting times (postrein-
forcement pauses) throughout were close to
30 s, a value typical of the pauses on the Fl
1-min schedules in the first half of each cycle.
In the second half of each cycle, very slight
increases in pause length were observed un-
der the FI 2-min condition, and some pauses
shorter than 30 s were observed in the FI 6-
min intervals. Pausing on the FI 3-min sched-
ules was identical to that found under the 12
FT 1-min schedules. Although we do not know
whether the models developed here apply
without modification to the substantially lon-
ger intervals used in these earlier studies,
their results are nonetheless consistent with
the present account. The counterintuitive re-
sult that pauses on the FI 2-min schedules
were longer than those on Fl 3-min and FI 6-
min schedules is explained by the fact that,
in these studies, the number of consecutive
presentations of each Fl value was inversely
proportional to the length of the FI. If the
subjects' pauses were determined by the
shortest of recent IFIs, then control by the
longer FIs can only be expected when
enough of them occur consecutively that the
EWMM process is no longer assessing any
short FIs. When the FI value was 2 min, six
presentations of this schedule were made,
compared to only two presentations of the FT
6-min schedule. Thus the EWMM process as-
sessed more long IFIs under the FI 2-min
condition than under the FI 6-min condition,
leading to longer pausing.

Innis (1981, Experiment 3, Condition 1)
investigated schedules in which two FI values
appeared in double alternation. The general
form of these schedules was two Fl 20, two
Fl 60, where 0 took on three values: 5, 15,
and 30 s. In every case, waiting times failed
to track changing Fl values. Innis found a
similar lack of temporal control in a condi-
tion in which long and short Fl values were
presented in strict alternation (Innis, 1981,
Experiment 4). All of these results are con-
sistent with EWMM linear waiting, because
there were never sufficient consecutive long
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IFI values to break the disproportionate influ-
ence of short IFIs.

Innis and Staddon (1971; see also Innis,
1981) compared cyclic-interval schedules
with different forms of progressions. In three
conditions, pigeons were exposed to a set of
seven FIs increasing either from 20 to 80 s
and back to 20 s in arithmetic steps; from 18
to 69 s and back in steps forming a logarith-
mic series; or in geometric steps from 3 to
176 s and back. Innis and Staddon concluded
from visual inspection of the series of aver-
aged postreinforcement pauses that the pi-
geons were tracking the FI values under all
conditions at a lag of zero or one cycle. Track-
ing was clearer under the arithmetic and log-
arithmic cyclic schedules than under the geo-
metric cyclic schedule. This would be
expected from models that give a dispropor-
tionate weight to shorter IFIs, because the oc-
casional long IFIs in a geometric series are
ignored by models of this type.

Recently, Higa et al. (1993) trained pigeons
on a sequence of IFIs of 15 s that, at an un-
predictable point in the session, could
change either to IFIs of 5 s (step down) or
45 s (step up). Higa et al. found that the sub-
jects responded almost immediately to the
step-down change in IFIs, but only gradually
to a step-up change. Wynne and Staddon
(1992, Experiment 5) found similar results in
an analysis of adaptation to longer IFIs.
Blocks of sessions in which the food delay on
an RID schedule was 40 s alternated with
blocks of sessions with food delays of 20 or
80 s. The development of waiting times ap-
propriate to the 40-s food delay was much
faster after previous experience with delays of
80 s than after delays of 20 s. These results
are further evidence that short IFIs dominate
over long ones in controlling waiting time.
There are some results that, at first glance,

do not appear to be easily reconciled with the
EWMM model. Higa et al. (1991, Experiment
3) simply presented pigeons with a series of
100 IFIs, 99 of which were of 15-s duration.
Intercalated in this series was a single, ran-
domly placed 5-s IFI "impulse." Three of 4
subjects showed a response to this impulse
that consisted of a single shorter waiting time
in the immediately following IFI and a return
to waiting times consistent with the longer IFI
value more or less immediately thereafter.
One subject showed an only slightly shorter

n

(D2
._--

.7 .

3:

post impulse IFI number
Fig. 8. Waiting times predicted from the EWMM

model for Higa et al.'s (1991) impulse experiment. The
impulse IFI is IFI 0. See text for further details.

waiting time in the postimpulse IFI, followed
by a gradual return over three or four IFIs to
the waiting time produced before the im-
pulse. At first glance the evidence from the
majority of these subjects appears to support
one-back linear waiting and not the EWMM
model.

However, the predictions of these models
are often nonintuitive, so we performed a
simulation of the behavior predicted by
EWMM linear waiting. Figure 8 shows pre-
dicted waiting times from the EWMM model
for a range of values of -y following a single
short (5-s) IFI embedded in a series of longer
(15-s) IFIs. Clearly, at higher values of y
(>0.7), the impact of the short IFI on waiting
time was almost entirely confined to the first
postimpulse IFI. Because in reality, the wait-
ing times vary noisily from IFI to IFI, the ap-
parent presence of an effect of the impulse
on later IFIs for values of -y around 0.5 to 0.7
would probably not be detectable in empiri-
cal data. At values of y less than 0.5, the im-
pact of a short IFI lasts longer, but it is also
much smaller in the first postimpulse IFI.
This is precisely the pattern found for the
one divergent subject in this experiment.
Thus, on closer inspection, the EWMM mod-
el can account both for the short-lived but
intense response to a single shorter IFI of the
majority of subjects and also for the longer
lasting, less intense response of the one re-
maining subject.

Is there a functional explanation for pi-
geons' special sensitivity to short IFIs? This
sensitivity may be a conservative strategy that
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reduces the possibility that a subject will miss
an opportunity to get food. After all, there is
an asymmetry in much operant behavior: The
cost of making an operant response is usually
very small, but the cost of missing an available
food delivery is high. Hence, when in doubt,
respond. There is also the logical fact that
waiting time is defined by the first response
in the IFI. As we have pointed out elsewhere
(Higa et al., 1991; Wynne & Staddon, 1992),
a small tendency to respond early in an IFI
will dominate even a strong tendency to re-
spond later, simply because an early response
removes the possibility of producing a longer
waiting time (this is the problem with relying
exclusively on waiting time as a measure).

In conclusion, the studies reported here
have shown that, although adaptation to
changing IFIs can be rapid, nonetheless it is
not typically one back, as we had originally
proposed (Wynne & Staddon, 1988). Rather,
a model proposing that the last few IFIs in-
fluence waiting time in such a way that short
IFIs have a greater influence than longer
ones can account for the data from these ex-
periments and from a wide range of disparate
results in the literature. Further research
needs to analyze more closely the manner in
which IFIs are combined and the factors that
control the size of the window over which IFIs
are measured.
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